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NASA TT F-11,551 

RIEMANN'S PROBUM WITH. CONTINUOUS COEFFICIENT 

I. B . Simonenko 
State University, Ros tov-on- the-Don 

ABSTRACT: A procedure for solving Riemann's boundary- 
value problem for the boundary between a multiply-connected 
region and its complement. Generalization of a result found 
previously by Gakhov by relaxing the conditions on the given 
functions. A slight change in one of the given functions does 
not appreciably change the result, so  that a sequence of 
approximations is possible. 

lo. Statement of the problem. Let C denote a contour consisting of m + 1 
simple closed contours Co, C1, . . . , Cm of the Lyapunov type that bound a 
connected region D+. Its complement with respect to the plane consists of the 
union of m bounded simply-connected regions D- (for k = 1, . . . , m) and an in- 
finite region D-. For brevity, we shall refer tothiscomplement as a region and 0 
shall denote i t  by D-. Following the general practice, we denote by L (C) the 

class of functions that are p-summable on the contour C.  
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We formulate Riemann's problem as follows: 

Find functions cp- that a re  analytic** in D', that have almost everywhere on + + 
the contour C limiting angular values @ (t) belonging to L (C) with p > 1, that 
satisfy the condition cp- (00) = 0, and that satisfy the boundary condition 

P 

where g(t)lE L (C) and G(t) is a continuous function that vanishes nowhere. 
P m 

= i  A s  usual, we call the integer x = 2 *k where K& = zx [arg G ( f ) ] ~ ~ ,  the index 
k=O 

of the probiem. 

, W e  take a s  positive direction around a boundary of D+ that direction which puts D+ 
' on one's left. L 

*Numbers in the margin indicate pagination in the foreign text. 
**We consider only functions that can be represented by a Cauchy integral. 
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Riemann's problem has been solved in closed form by F. D. Gakhov [l] for the 
case in which G(t) and g(t) satisfy a HUlder condition. B. V. Khvedelidze genera- 
lized this solution to the case of a multiply-connected region [2] when g is p- 
summable for p > 1 [3]. 

In the present article, we  show that Gakhov's results dealing with Riemann's 
problem remain valid when G(t) is assumed merely continuous, 

2". We know that every summzible fi;;ction can be represented in the form 

0 ( I )  = a+ ( t )  - CD- ( I ) ,  (2) 

where the &(t) a r e  almost everywhere limiting angular values of functions &(z) 

that a r e  analytic in D-. The representation (2) is unique if we assume that + 
&(t) 6 L (C) (with 6 > 0) and&-(oo) = 0. s 

The functions @*(tf a r e  given by Sokhotskiy's formulas 
~ . -. 

I 2 7 9  - i 

The validity of formulas (3) for summable was shown by I. I. Privalov [4]. 
B.V. Khvedelizde [3] showed that membership of 9(t) in the class L (C), for 
p > 1, implies that S+(t) and @-(t) belong to L (C) also and that the singular 

operator i- ?(2 ds is a bounded operater in the norm of the space L (C), for 

P 

P 
r - t  P 

C 1 
p > 1; that is, ( 5  1 y- 5 :2: dr I ds)l" \<: Alp( 10 ( t )  IPds)", where M is a constant 

independent of *. It follows fl'olii this that 
c ' c '  P 

where 

This enables us  to formulate Riemann's problem in the following form. 

Find a function @ belonging to the class L (c) and satisfying the boundary 
P 

condition ( l ) ,  where and *- denote the operators defined by equations (3). 

l Our investigation is based on the following simple idea: If G = 1, Riemann's 
problem reduces to a saltus problem and unconditionally has a unique solution in 
the class Lp. It turns out that small deviations in the coefficient G from unity 
do not change the nature of the solution. This can be proved by the method of 
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successive approximations. We can shift to the general case choosing a sequence 
of functions satisfying a HUlder condition that converges to In G. An analogous 
device was used by S. G. Mikhlin [5] in his investigation of singular integral equa- 
tions with Cauchy kernel. 

3". Let us  look at the case of Riemann's problem when G(t) is measurable 
and satisfies the condition 

6 I t ) G m  !P> 1). 
' 2  , IGo--I<~<,.,pt 

If we subtract @- from both sides of (l), we obtain 

(1) [G (1) - I ]  9- ( t )  + 6 (1). (4) 

Applying the principle of contraction mappings, we 
(and consequently (1)) necessarily has a unique solution. 

see that the problem (4) I 

4". The casex  =x = . . . =x = 0. In this case, In G is a continuous - /280 

Let us approximate it with a function f that satisfies a HUlder condition 
m 

function. 
and that satisfies the inequality 

Furthermore, by using Gakhov's method, we can represent the function 
f Gl(t) = e in the form of a ratio Gl(t) = X'(t)/X-(t), where the X' a r e  functions 

that areanalytic inthe regions D- + C, and nonzero everywhere. + 

f *  Let us introduce new functions G1 = @ [Xj-l, in terms of which the problem 
(1) can be written as follows: 

-1 By virtue of condition (51, the coefficient GGi satisfies the requirements 

of section 3". Therefore, the problem (6 )  and, hence, the problem (1) in the 
case x = x  - - . . . = H  = 0 necessarily has a unique solution. m 

5". Let us  now investigate the most general case. 

a) x. = 0. Introducing the new unknown functions 
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we arrive at the problem 

where 

m m 

& ( t )  = 11 (f - zk)"'G ( t ) ,  g*(l) = ( t  - ~ k ) " ~ g  ( t ) .  
k=1 k=1 

We note that 

Therefore, op the basis of the results of section 4", we conclude that the 
problem(6), a d h e n c e  problem (1) in the casex  = 0 have a unique solution. 

b) ' ~ t  > 0. Let us write the problem (1) in the following form: 

( t  - zo)-x cDf ( t )  - ( t  - 20)- PX-I(f) = 
( t - ~ ~ ) ' " G ( t ) ( D ) - ( f )  + (f - ~ , ) " g ( f ) - ( ( f - - o ) - ~ p x - l ( r ) ,  

\ where zo,C D+; Px -1 is a polynomial of degree not exceedingx -'€,chosenineuch\ 
a way that the function (z - z0)* [@ (z) - Px - ,(z)] does not have a pole at the 
point z 

Riemann's problem with coefficient (t - zo)* G. Then we have 

+ 
+ We note that Ind (t - zo)* G = 0.  We denote by R- an operator solving 

0' 

~ 

(t - z0)- [@+ ( t )  - P x - 1  ( t ) ]  = R+ l(g ( 1 )  - &-* ( t ) )  (t  - ZJXl. 

@' (f) = R'((g (f) - Px-1 ( t ) )  (t  - 20)"J. (8) 

We find @+ from the first equation: 

We have shown that the solution of the problem (1) must be of the form /281 - 
(8) o r  (9). However, one can easily see that, for an arbitrary polynomial 

formulas (8) and (9) yield the general solution of the problem. 

c) x < 0. We write the problem (1) in a different form: 

5.t - 1' 

(Dt (C) ( f  - z")--" = G ( 1 )  ( 1  - z0)-' (b- ( 1 )  4- fi  ( I )  ( I  - z,,)-~. 

Obviously, Ind(t - zo)* G(t) = 0 and (t - zo)*@+ (t) is analytic in D+. If we 

again denote by Rf an operator that solves Riemann's problem with coefficient 
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(t - zo)% G, we obtain 

(D’ (2 )  = R- [ ( t  - zo)-”g ( I ) ] .  

The function defined by the expression (10) has, in general, a pole of 
order, I x 1at the point zo. Therefore, for the problem posed to have a solution, 

I x I solvability conditions must be satisfied: 

When (12) is satisfied, the problem has a unique solution. 

Summarizing the results of section 5”, we have: 

Theorem, a) In the casex  = 0, Riemann’s boundary problem has a unique 
solution. 

b) In the case% > 0, the problem is always solvable, and its general solu- 

c) In the casex  < 0, the problem has a solution only when I x I solvability 

tion has x linearly independent components. I 

conditions S g = 0 are  satisfied, where the % a re  linearly independent functionals. 

When these conditions a re  satisfied, the problem has a unique solution. 
k 

In conclusion, I wish to express my deep gratitude to F. D. Gakhov, who 
supervised the work, and to V.V.  Ivanov for useful criticism of it. 
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